
ARTICLE IN PRESS
0923-5965/$ - se

doi:10.1016/j.im

E-mail addre
Signal Processing: Image Communication 22 (2007) 583–590

www.elsevier.com/locate/image
Modeling human-like intelligent image processing:
An information processing perspective and approach

Emanuel Diamant

VIDIA-mant, P.O. Box 933, 55100 Kiriat Ono, Israel

Received 29 May 2007; accepted 30 May 2007
Abstract

We live in the Information Age, and information has become a critically important component of our life. The success of

the Internet made huge amounts of it easily available and accessible to everyone. To keep the flow of this information

manageable, means for its faultless circulation and effective handling have become urgently required. Considerable

research efforts are dedicated today to address this necessity, but they are seriously hampered by the lack of a common

agreement about ‘‘What is information?’’ In particular, what is ‘‘visual information’’—human’s primary input from the

surrounding world. The problem is further aggravated by a long-lasting stance borrowed from the biological vision

research that assumes human-like information processing as an enigmatic mix of perceptual and cognitive vision faculties.

I am trying to find a remedy for this bizarre situation. Relying on a new definition of ‘‘information’’, which can be derived

from Kolmogorov’s complexity theory and Chaitin’s notion of algorithmic information, I propose a unifying framework

for visual information processing, which explicitly accounts for the perceptual and cognitive image processing peculiarities.

I believe that this framework will be useful to overcome the difficulties that are impeding our attempts to develop the right

model of human-like intelligent image processing.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The explosive growth of visual information in our
surroundings has raised an urgent demand for
effective means for organizing and handling these
immense volumes of information [1]. Because hu-
mans are known to be very efficient in such tasks, it
is not surprising that computer vision designers are
trying again and again to get answers for their
worrying problems among the solutions that human
visual system has developed in course of millions of
e front matter r 2007 Elsevier B.V. All rights reserved
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years of natural evolution. Nearly half of our
cerebral cortex is busy with processing visual
information [2], but how it is done ‘‘in vivo’’ remains
a puzzle for many generations of thinkers, philoso-
phers, and contemporary scientific researchers.

Nevertheless, a working theory of human visual
information processing has been established about
25 years ago by the seminal works of Marr [3],
Treisman [4], Biederman [5], and a large group of
their associates and followers. Since then it has
become a classical theory, which dominates today in
all further developments in the field. The theory
considers human visual information processing as
.
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an interplay of two inversely directed processing
streams. One is an unsupervised, bottom-up direc-
ted process of initial image information pieces
discovery and localization. The other is a super-
vised, top-down directed process, which conveys the
rules and the knowledge that guide the linking and
binding of these disjoint information pieces into
perceptually meaningful image objects.

In modern biological vision research, this duality
is referred to as perceptual and cognitive faculties of
vision. In computer vision terminology, these are
the low-level and high-level paths of visual informa-
tion processing. Although Treisman’s theory [4]
definitely positions itself as ‘‘A Feature-Integration
Theory’’, the difficulties in defining proper rules for
this feature integration have impelled a growing
divergence between perceptive and cognitive fields
of image processing [6]. Obviously, that was a
wrong and a counter-productive development, and
human vision researchers were always aware of its
harmful consequence [7]. For this reason, the so-
called ‘‘binding problem’’ has been announced as a
critical exploration goal, and massive research
efforts have been directed to its resolution [8].
Unfortunately, without any discernable success.

In computer vision, the situation is even more
bizarre. Thus far, computer vision community was
so busy with its everyday problems that there was
no time to raise basic research ventures. Principal
ideas as well as their possible solutions are usually
borrowed from biological vision research. There-
fore, following the trends in biological vision, for
decades computer vision R&D has been deeply
plunged into bottom-up pixel-oriented image pro-
cessing. Low-level image computations have be-
come its prime and persistent goal, while the
complicated issues of high-level processing were
just neglected and disregarded.

However, it is impossible to ignore them com-
pletely. It is generally acknowledged that any kind
of image processing is unfeasible without incorpora-
tion into it the high-level knowledge ingredients.
For this reason, the whole history of computer-
based image processing is an endless saga on
attempts to seize the needed knowledge in any
possible way. The oldest and the most common ploy
is to capitalize on the domain expert’s knowledge
and adapt it to each and every application case. It is
not surprising, therefore, that the whole realm of
image processing has been, and continues to be,
fragmented according to the high-level knowledge
competence of the experts in the corresponding
domains. That is why we have today: medical
imaging, aerospace imaging, infrared, biologic,
underwater, geophysics, remote sensing, microscopy,
radar, biomedical, X-ray, and so on ‘‘imagings’’.

The advent of the Internet, with huge volumes of
visual information scattered over the web, has
demolished the long-lasting custom of capitalizing
on the expert’s knowledge. Image information
content on the Web is unpredictable and diversified.
It is useless to apply specific expert knowledge to a
random set of distant images. To meet the
challenge, the computer vision community has
undertaken an enterprise to develop the so-called
content-based image retrieval (CBIR) technologies
[9,10]. However, deprived of any reasonable sources
of the desired high-level information, computer
vision designers were forced to proceed in only
one possible direction of trying to derive the high-
level knowledge from the available low-level in-
formation pieces [11,12].

In doing so, computer vision designers have once
again demonstrated their reliance on biological
vision trends and fashions. In biological vision, a
rank of theoretical and experimental work has been
done in order to support and to justify this above-
mentioned tendency. Two ways of thinking could be
distinguished in this regard: chaotic attractors
modeling [13,14], and saliency attention map
modeling [15,16]. We will not review these ap-
proaches in details. We will only note that both of
them presume low-level bottom-up processing as
the most proper way for high-level information
recovery. Both are computationally expensive. Both
definitely violate the basic assumption about the
leading role of high-level knowledge in the low-level
information processing.

It will be a mistake to say that computer vision
people are not aware of these discrepancies. On the
contrary, they are well informed about what is going
on in the field. However, they are trying to justify
their attempts by promoting a concept of a
‘‘semantic gap’’, an imaginary gap between low-
and high-level image features. They sincerely believe
that they would be able to bridge it some day [17].

It is worth to mention that all these develop-
ments—feature binding in biological vision and
semantic gap bridging in computer vision—are
evolving in atmosphere of total indifference to prior
claims about high-level information superiority in
the general course of visual information processing.
Such indifference seems to stem from a very loose
understanding about what is the concept of
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‘‘information’’, what is the right way to use it
properly, and what information treatment options
could arise from this understanding.
2. Re-examining the basic assumptions

Everyone, who is not deaf, knows that we live
today in the Information Age, where information is
an indispensable ingredient of our life. We consume
it, create it, seek it, transfer, exchange, hide, reveal,
accumulate, and disseminate it—in one word:
information is a remarkably important component
of our life. But can someone explain me what we
have in mind when the word ‘‘information’’ is
uttered? My attempts (undertaken several years
ago) to get my own answer for this question were so
desperate that I was almost ready to accept the
stance that information is an indefinable entity (like
‘‘space’’ and ‘‘time’’ in classical physics, e.g.).
Fortunately, at the end, I have hit on an informa-
tion definition fitting my visual information hand-
ling aims. It turns out that this definition can be
derived from Solomonoff’s Theory of Inference [18],
Chaitin’s Algorithmic Information Theory [19], and
Kolmogorov’s Complexity Theory [20]. Recently, I
have learned that Kolmogorov’s Complexity and
Chaitin’s Algorithmic Information Theory are
referred as respected items of a list of seven possible
contestants suitable to define what actually infor-
mation is [21]. In this regard, I was very proud of
myself that I was lucky to avoid the traps of
Shannon’s Information Theory, which is known to
be useful in communication applications, but it is
absolutely inappropriate for visual information
explorations that I am trying to conduct. The
reason for this is that Shannon’s information
properly describes the integrated properties of an
information message, while Kolmogorov’s defini-
tion is suitable for evaluation of information
content of separate isolated subparts of a message
(separate message objects). This is, indeed, much
closer to the way in which humans perceive and
grasp their visual information.

The results of my investigation have been already
published on several occasions [22–25], and inter-
ested readers can easily get them from a number of
freely accessible repositories (e.g., arXiv, CiteSeer
(the former Research Index), Eprintweb, etc.).
Therefore, I will only repeat here some important
points of these early publications, which properly
reflect my current understanding of the matters.
The main point is that information is a description,
a certain alphabet-based or language-based descrip-
tion, which Kolmogorov’s theory regards as a
program that (when executed) trustworthy repro-
duces the original object [26]. In an image, such
objects are visible data structures from which an
image consists of. So, a set of reproducible
descriptions of image data structures is the informa-
tion contained in an image.

The Kolmogorov’s theory prescribes the way in
which such descriptions must be created: at first, the
most simplified and generalized structure must be
described. Then, as the level of generalization is
gradually decreased, more and more fine-grained
image details (structures) are become revealed and
depicted. This is the second important point, which
follows from the theory’s pure mathematical con-
siderations: image information is a hierarchy of

recursive decreasing level descriptions of information
details, which unfolds in a coarse-to-fine top-down
manner. (Attention please! Any bottom-up proces-
sing is not mentioned here. There is no low-level
feature gathering and no feature binding. The only
proper way for image information elicitation is a
top-down coarse-to-fine way of image processing.)

The third prominent point, which immediately
pops-up from the two just mentioned above, is that
the top-down manner of image information elicitation

does not require incorporation of any high-level

knowledge for its successful accomplishment. It is
totally free from any high-level guiding rules and
inspirations. What immediately follows from this, is
that high-level image semantics is not an integrated
part of image information content (as it is tradition-
ally assumed). It cannot be seen more as a natural
property of an image. Image semantics must be seen
as a property of a human observer that watches and
scrutinizes an image. That is why we can say now:
semantics is assigned to an image by a human observer.
That is strongly at variance with the contemporary
views on the concept of semantic information.
Following the new information elicitation rules, it is
impossible to continue to pretend that semantics can
be extracted from an image (as in [27,28]), or should
be derived from low-level information features via the
semantic gap bridging (as in [29,30], and many
others). That simply does not hold any more.

3. Computer vision implications

This new definition of information has forced us
to reconsider our former approach to image



ARTICLE IN PRESS
E. Diamant / Signal Processing: Image Communication 22 (2007) 583–590586
information processing. The validity of our new
assumptions and the inevitable changes in design
philosophy that acceptance of these assumptions
imply, have motivated us to test the issues in a
framework of a visual robot design enterprise. The
enterprise is aimed to creating an artificial vision
system with some human-like cognitive capabilities.
It is generally agreed that the first stage of such a
system has to be an image segmentation stage at
which the whole bulk of image pixels (image raw
data) has to be decomposed into a finite set
of image patches. The latter are submitted after-
wards to a process of image content analysis and
interpretation.

A practical algorithm based on the announced
above principles has been developed and subjected
to some systematic evaluations. The results were
published, and can be found in [23–25]. There is no
need to repeat again and again that excellent,
previously unattainable segmentation results have
been attained in these tests, undoubtedly corrobor-
ating the new information processing principles.
Not only an unsupervised segmentation of image
content has been achieved (in a top-down coarse-to-
fine processing manner, without any involvement of
high-level knowledge). A hierarchy of descriptions
for each and every segmented lot (segmented object)
has been achieved as well. It contains the center of
mass coordinates, the direction of object’s main
axeses, object’s contour and shape depiction rules
(in a system of these axeses), and other object
related parameters (object related information),
which enable subsequent object reconstruction.
That is exactly what we have previously defined as
information. That is the reason why we specify this
information as ‘‘physical information’’, because that
is the only information present in an image, and
therefore the only information that can be extracted

from an image. For that reason, it must be
dissociated from the semantic information, which
(as we understand now) is a property of an external
observer. Therefore, it must be treated (or modeled)
in accordance with specific his/her cognitive infor-
mation processing rules.

What are these rules? A consensus view on this
topic does not exist as yet in the biological vision
theories and in the computer vision practice. So, we
have to blaze our own trails. We decided, thus, to
meet this challenge by suggesting a new approach
based on our previously declared information
elicitation principles. The preliminary results of
our first attempt were published recently in [31]. As
in the case of physical information, we will not
repeat here all the details of this publication.
We will proceed with only a brief reproduction of
some critical points needed to follow up our discussion.

Human’s cognitive abilities (including the aptness
for image interpretation and the capacity to assign
semantics to an image) are empowered by the
existence of a huge knowledge base about the things
in the surrounding world kept in human brain/head.
This knowledge base is permanently upgraded and
updated during the human’s life span. So, if we
intend to endow our visual robot with some cognitive
capabilities we have to provide it with something
equivalent to this (human) knowledge base.

It goes without saying that this knowledge base
will never be as large and developed as its human
prototype. But we are not sure that the requirement
to be large and huge is valid in our case. After all,
humans are also not equal in their cognitive
capacity, and the magnitude, the content of their
knowledge bases is very diversified too. (The
knowledge base of aerial photographs interpreter
is certainly different from the knowledge base of
roentgen images interpreter, or IVUS images, or
PET images.) The knowledge base of our visual
robot has to be small enough to be effective and
manageable, but sufficiently ample to ensure robot’s
acceptable performance. Certainly, for our feasi-
bility study we can be satisfied even with a relatively
small, specific task-oriented knowledge base.

The next crucial point is the knowledge (base)
representation issue. To deal with it, we first of all
must arrive at a common agreement about what is
the meaning of the term ‘‘knowledge’’. (A question
that usually has not a commonly accepted answer.)
We state that in our case a suitable and a sufficient
definition of it would be: ‘‘Knowledge is a
memorized information’’. Consequently, we can
say that knowledge (like information) must be a
hierarchy of descriptive items, with the grade of
description details growing in a top-down manner at
the descending levels of the hierarchy.

What else must be mentioned here, is that these
descriptions have to be implemented in some
alphabet (as it is in the case of physical information)
or in a description language (which better fits the
semantic information case). Any further argument
being put aside, we will declare that the most
suitable language in our case is a natural human
language. After all, the real knowledge bases that we
are familiar with are implemented on a natural
human language basis.
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The next step, then, is pre-determined: if natural
language is a suitable description implement, the
suitable form of this implementation is a narrative,
a story tale [32]. If the description hierarchy can be
seen as an inverted tree, then the branches of this
tree are the stories that encapsulate human’s
experience with the surrounding world. And the
leaves of these branches are single words from
which the stories are composed of. In computer
vision terminology these single words are defined
as nodes.

The descent into description details, however,
does not stop here, and each single word can be
further decomposed into its attributes and rules that
describe the relations between the attributes. At this
stage the notion of physical information comes back
to the game. Because the words are usually
associated with physical objects in the real world,
words’ attributes must be seen as memorized
physical information descriptions. Once derived
(by a visual system) from the observable world
and learned to be associated with a particular word,
these physical information descriptions are soldered
in into the knowledge base. Object recognition,
thus, turns out to be a comparison and similarity
test between currently acquired physical informa-
tion and the one already retained in the memory. If
the similarity test is successful, starting from this
point in the hierarchy and climbing back on the
knowledge base ladder we will obtain: first, the
linguistic label for a recognized object, and second,
the position of this label (word) in the context of the
whole story. In this way, object’s meaningful
categorization can be acquired, a first stage of
image annotation can be successfully accomplished,
paving the way for further meaningful (semantic)
image interpretation.

One question has remained untouched in our
discourse: How this artificial knowledge base has to
be initially created and brought into the robot’s
disposal? The vigilant reader certainly remembers
the fierce debates about learning capabilities of
neural networks and other machine learning tech-
nologies. We are aware of these debates. But in our
case they are irrelevant for a simple reason: the top-
down fashion of the knowledge base development
pre-determines that all responsibilities for knowl-
edge base creation have to be placed on the
shoulders of the robot designer.

Such an unexpected twist in design philosophy
will be less surprising if we recall that human
cognitive memory is also often defined as a
‘‘declarative memory’’. And the prime mode of
human learning is the declarative learning mode,
when the new knowledge is explicitly transferred to
a developing human from his external surrounding:
From a father to a child, from a teacher to a
student, from an instructor to a trainee. There is
evidence that this is not an especially human
prerogative. Even ants are transferring knowledge
in a similar way [33]. So, our proposal that robot’s
knowledge base has to be designed and created by
the robot supervisor is sufficiently correct and is
fitting our general concept of information use and
management.

4. Brain vision implications

Since the beginning of the computer vision age,
there was a common belief that biological vision is
an endless source of inspiration for the computer
vision designs, and that the main ideas, which
underpin contemporary computer vision implemen-
tations, are borrowed from the fruitful fields of
biological vision research. In Section 1 of this paper,
we have shown that such farfetched credits are
groundless. In the course of time, only the bottom-
up processing philosophy has remained as a
common feature that still can be found both in
biological and in computer vision designs. However,
practical implementations of this philosophy have
led to very different and incompatible develop-
ments: massive DSP-based parallel processing in
computer vision and selective attention-based se-
quential processing in biological vision. This diver-
gence is an annoying misfortune. In [25], I tried to
allege that there must be a general underpinning
basis able to reconcile the this day detached
subdivisions. I believe that the unified information
processing framework proposed in this paper can be
useful in pursuing this goal. In this regard, it is
tempting to see how biological vision research can
benefit from the proposed new ideas and to what
extent elements of these new ideas can be discerned
in the ongoing biological vision experiments.

While the mainstream of biological vision re-
search continues to approach visual information
processing in a bottom-up fashion [34], it turns out
that the idea of primary top-down processing was
never been extraneous to biological vision. The first
publications addressing this issue are dated by the
early eighties of the last century (David Navon at
1977 [35], and Lin Chen at 1982 [36]). The
prominent authors were persistent in their views
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on the matters, and further research reports have
been published regularly until the recent time
[37,38]. However, it looks like they all have been
overlooked, both in the biological and in the
computer vision. Only in the last years, a tide of
new evidence has appeared that definitely advocates
for the top-down processing primordiality [39,40].

The field of cognitive vision is not ready yet to
leave the traditional information processing dog-
mas. However, supporting evidence for a ‘‘declara-
tive’’ interpretation of physical information can be
already found in [41], where it is convincingly shown
how a color is being ‘‘assigned’’ to an object.

Knowledge transfer from the outside and infor-
mation description exchange in course of knowledge
base building and declarative learning accomplish-
ment have been observed not only in humans. They
are ubiquitous even among far more primitive living
beings: ants that learn in tandem [33] we have
already mentioned in Section 3. The so-called
horizontal gene transfer responsible for antibiotic
resistance development of bacteria [42] can also be
seen as a supporting evidence for a top-down
(external) knowledge base creation phenomenon.

However, the most surprising insights are still
awaiting their further clarification and confirma-
tion. If our definition of information as a descrip-
tion is correct, then the current belief that a spiking
neuron burst is a valid form of information
representation and exchange [43] does not hold
any more. Variances in spikes’ heights or duty times
are not an adequate alphabet to implement infor-
mation descriptions of a desired complexity. We can
boldly speculate that a biomolecular alphabet
would be a much better and appropriate solution
for such cases. Support for this kind of speculations
can be derived from the recent advances in
molecular biology research [44,45]. The spikes that
we observe and investigate today could be seen as a
reflection of charges that are carried by the ionized
parts of the molecular information messages.

This molecular description hypothesis fits very
well also our new brain memory organization
theory, which pretty well resembles the paradigm
of computer memory use. Dendrite spines can be
seen as a proper accommodation for the molecular
descriptors, providing a kind of a biological hard-
ware, a biological memory buffer, which is able to
hold read/write-able information messages. Com-
puter inspired hypotheses about ‘‘object files’’ [46]
and ‘‘event files’’ [47] are repeatedly emerging in
biological vision literature over the last decades. It
would be interesting to notice that the concept of a
biological event file fits very well also the narrative
knowledge representation hypothesis proposed ear-
lier in Section 3.

Further support for the idea that a complex
information description can be stored in a single
neuron memory cell can be seen in [48]. In this case
as well, reactivation and retrieval of a memorized
description resembles well the paradigm
of a computer memory bank store/fetch trans-
action, a single_write/multiple_read memory access
operation.

I am definitely excited by the options that brain
vision research can gain from such a back projection
of a computer vision theory (about the essence of
information) on the issues of modeling visual
information processing in human brain.

5. Some concluding remarks

In this paper, we propose a new definition of
information, in particular, a definition of visual
information, which is the prime point of our
concern. Relying on this definition, a substantial
progress has been achieved in modeling human-like
intelligent image processing.

The approach outlined in this paper appears to
conflict with the mainstream of research and
development enterprises undertaken in the frame
of European IST and USA TRECVID initiatives
[49,50]. The main points of divergence are as
follows. The bottom-up way of image processing
(from local details to more general forms of
representation), commonly accepted today as the
preferred processing alternative, is applicable only if
the similarity metrics can be somehow defined a
priory. Generally, that is not the case. The right way
of visual information processing is a top-down
(from coarse-to-fine) processing alternative, as it is
proposed in this paper.

Relying on the bottom-up processing, the right
structure of the information hierarchy can never be
caught properly. That is the source of many
deadfalls that the mainstream affiliates experience
over and over again. For example, the unlucky
attempts to solve the semantic gap problem stem
from an improper placement of perceptual and
cognitive vision features on the same hierarchical
level. The same bottom-up preferences perpetually
derail the machine learning-based approaches
for knowledge/information acquisition and hand-
ling. From a top-down processing perspective, a
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‘‘machine teaching’’ approach, when knowledge is
brought into from the outside, looks as a far more
appropriate solution.

The examples mentioned above do not exhaust
the list of changes that must be imposed on the
mainstream projects if the new information proces-
sing rules are taken into the consideration. It is
obvious that these rules are incomplete and
tentative, since this is just a first step, and further
research remains to be done. The enterprise that we
are aimed at, is not a task for a single person or a
small group of developers. It requires consolidated
efforts of many interesting parties. We hope that the
time for this collaboration is not far away.
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